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Preface

This report will review our own work and that of others dealing with
our previously identified and now more tightly defined target of
difficulty, word problems involving multiplication, division, and
intensive quantities. We will first outline the various uses of these
operations and their structures, and describe what we know and what we
assume regarding students' cognitive models of these operations,
especially as they relate to intensive quantities. We will then go on
to describe our planned multiple representation integrated software,
which is intended to enrich and render more flexible, student
cognitive models of these operations and quantities.
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1. Overview,

Word Problems Project

1.1 The Bases of Our Program

Recent Project activity has refined and focused inquiry on ever

more tightly defined targets of difficulty associated with

student inability to solve school word problems. We have

narrowed the issues to be addressed as those having to do with

building appropriately rich and flexible student cognitive

models of multiplication, division, and intensive quantities.

Among these we have decided to begin with intensive quantities

because they are a source 3f difficulty in both multiplication

and division problems, because they are intimately involved in

multiplication and division, and because exploring an effective

curricular response to student difficulty with intensive

quantities will prepare the way for dealing with the operations

as well. We also expect that the style and strv=ture of

software planned for intensive quantities will extend to the

software for modeling the operations.

But before outlining our approach to the building of cognitive

models, we will sketch the philosophical basis for both our

research investigations and our technological-pedagogical

initiatives.

The approach taken by the Word Problems Project stands on three

philosophf= 2oundations:
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(i) A philosophy of quantity that includes explicit and

systematic provision for the role of referents for numbers.

This view animates our concern with the semantics of problem

situations and the distinctions we consistently make between

intensive and extensive quantities.

(ii) A philosophy of educational technologies that exploits

their new capacity to provide multiple, interactively

coordinated representations. Broader dimensions of the Center's

philosophy of educational technologies are discussed in

available Center Reports (e.g., "The Use of Information

Technologies for Education in Science, Mathematics, and

Computers," Educational Technology Center, March, 1984). The

aspect of concern to this particular project is the new (to

school microcomputers) capacity to support simultaneously

visible representations of varying concreteness that are

dynamically linked. By acting on such coordinated

representations, the student will be aided in building an

increasingly powerful repertoire of cognitive representations

that are thereby_intimately coordinated. We feel that the new

dimension of representational power embodied in the simultaneity

and depth of interfacing among representations may rival other

of the microcomputer's educational gifts, such as graphics and

interactive capabilities. Actions and consequences across

representations that were once representable only serially in

temporal sequence, and usually in clumsy fashion, will now

become simultaneously visible or controllable, and so

connections can be explicitly represented, inspected, utilized

6
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and internalized.,

(iii) A philosophy of curriculum that puts a premium on

longitudinal coherence, coherence with respect to mathematical

concepts and forms for their representation. The linkages now

possible in the learning environment will greatly enhance our

ability to build more direct and accessible routes to more

advanced mathematical ideas and representation systems. These

linkages will also, when coupled with new understandings of how

complex mathematical ideas develop and interrelate, help to

build the cognitive coordination of the various strands of those

complex ideas. The long sought-after ideal of unity and

coherence in the mathematics curriculum may now become much more

achievable than ever before.

I

1.2 Student Cognitive Models

Without rich and flexible cognitive representations of

multiplication, division and intensive quantities, students fail

to recognize the appropriate mathematical structures in

situations calling for their application. Recent work has

provided a general understanding of students' common cognitive

models o4 multiplication (dominated by the repeated addition

model), division (the partitive "fair share" and quotative

models, dominated by the former), and intensive quantities

(dominated either by familiar semantic-based structures when the

quantity refers to a well-chunked "rate" such as miles per hour,

or by simple ratios when less familiar referents are involved).

7
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See, for example, the work of Fischbein, et al (1985), Greer &

Managan (1984), Bell, et al (1984), Silver (1985), and Greer (in

press). Furthermore, as detailed in the body of this Report, we

have reanalyzed our earlier data to relate our definitions of

extensive and intensive quantities to the partitive and

quotative models of division, thereby helping to confirm

hypotheses regarding the dominance of the partitive model among

students. We also will relate our perspective and work to

others' work on ratio, rational number, proportion, and more

general "multiplicative structures" in the sense of Vergnaud

(1983). A large body of research bears upon our work by virtue

of its being at the nexus of several complex mathematical ideas.

1.3 Development of Linked-Representation Software

We plan to exploit the above-mentioned new microcomputer

capacities to address directly the paucity, inflexibility, and

pc.verty of student cognitive models for multiplication, division

and intensive quantities. The manipulation of multiple

representations of these concepts in a coordinated window

environment appears to provide a potentially ideal vehicle for

building those cognitive representations now lacking and for

linking these to students' existing mental models.

We now sketch briefly our initial plan for building a

four-representation software learning environment to deal with

intensive quantities, ranging from very concrete iconic

representations of physical entities to a potent graphical
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representation of intensive quantity as slope of a line in a

coordinate plane.

(i) The most primitive representations will provide concrete

iconic representations of intensive quantities. A student can

act upon these in any of several ways for example, by

replicating or deleting copies of the base set of (labeled)

objects to yield a specific numeric value of the numerator or

denominator. More than one form of such a representation will

be available to account for the different semantic relationships

among the referents in intensive quantities as well as for the

differences between discrete and continuous quantities. This

will also provide more than one starting point for students who

may differ in their primitive conceptions of intensive

quantiti*s.

(ii) Coordinated with the previous representations will be a

vertical data table (with appropriately labeled columns), so

that as the number of base sets changes, the corresponding

entries in the data table list change (or are appropriately

highlighted). Actions on or tasks involving the concrete

representation are, of course, paralleled in the data table

representation.

(iii) A critically important high level "goal" representation

will be a coordinate graph where the axes will be labeled to

match the object labels and where points would be plotted to

parallel activities in the other representations (and

9
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vice-versa, of course) - the numerical ratio associated nith an

intensive quantity is thus represented by the slope of the line

of points.

(iv) A fourth representation will be a Semantic Calculator-like

"operations pad" where one manipulates and does arithmetic with

formal expressions involving the involved quantities (Schwartz,

1983).

The first, third, and fourth components would thus provide at

least three very different cognitive tools for getting hold of a

problem, and the second (the table) would provide a numerical

bridge between any of the other two. Each of the three basic

tools would engage a different portion of the student's

cognitive4apparatus, involving, respectively, concrete

perceptual processing, visual-imagistic processing, and the

formal-linguistic processing associated with the manipulation of

formal expressions. We may incorporate other mediating

representations into the software environment if they prove

necessary or desirable - for example, a "function machine" to

assist with the generation and interpretation of the coordinate

graphs. The concrete representations would serve as a flexible

starting point to accomodate differences in student approaches

to a given task; but also, since they would all be coordinated

with the same mathematical representations embodied in the other

three, their mathematical commonalities would bra highlighted as

the one aspect that they all share despite their surface

differences. By adjusting the tasks, a given student could be

10
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brought into contact with a sequence of such concrete starting

points.

A major hypothesis to be investigated beyond the effectiveness

of the individual components is the extent to which experience

with such dynamically linked systems builds cognitive

coordination of the associated cognitive representation systems.

We and others (e.g., Dickson, 1985) see great promise in the

technology's power to present and integrate representations

simultaneously that have previously been approachable only

serially in dynamic media, including the "live" classroom

teaching medium. In static media, simultaneity of presentation

is possible, e.g., a table of data and a graph; but only the

products are available for presentation, not the processes.

V

As components become available (a few pieces already exist in

prototype form as the result of earlier work at the Educational

Development Center), we will videotape and analyze student

interaction using a split screen format, half for the student

and half for the computer screen, as well as record keystrokes.

We expect that this stage of the project will continue for at

least half a year. As coordinated components reach beta stage

(essentially the final stage for our purposes), we will enlarge

the testing of their impact to larger groups involving 3rd 7th

graders.

More specifically, this research/development enterprise has two

direct purposes and one methodological purpose:

11
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(i) To address the identified target of difficulty by beginning

the process of appropriate curriculum design through application

of state-of-the-art technology. (Note that this is by no means

a curriculum development project, but rather an investigation

into the nature of potentially appropriate technological

components of a curriculum.)

(ii) To investigate the cognitive impact of the new capabilities

of school microcomputers in a more general sense, especially

their effect on ..:he building and coordinating of cognitivc

models and their potential for introducing more powerful

representations to younger students that lead more smoothly and

coherently to the more advanced ideas of mathematics.

4

(iii) A methodological objective (not unique to this particular

Center project) is the rigorous assessment of the

above-mentioned cognitive impact. This task will be quite

challenging given the lack of curricular or pedagogical

parallels that would support any kind of "control" experience

for comparison purposes. Not only is the experience of

simultaneous and coordinated visual representations of

elementary mathematical concepts quite novel, but in addition

there are few if any precedents for the kinds of activities that

are possible in such an environment, especially at the 3rd-7th

grade levels at which we will be concentrating our work. As

indicated in Section 4, we are utilizing the insights and

materials of several earlier curriculum development projects

12
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from the sixties and early seventies (in addition, of course, to

current research regarding cognitive representation=, of

mathematical ideas).

We should also point out that in the much more completely

studied and somewhat less mathematically complex domain of

addition and subtraction (Carpenter, et al, 1982), some pilot

software development joining concrete and formal representations

has taken place (Moser & Carpenter, 1982 - the Math Boxes

Program; Feurzeig & White, 1984 the Summit Programs; Sybalsky,

Burton & Urown, 1984 the Arithmekit Environment; Larkin &

Briars, 1982 the CHIPS Program). While none of these efforts

addresses the specific mathematical content of interest to us,

they do direct attention to the goal of providing connections

between foncrete and more power'ul abstract representations,

especially the earlier Logo-based numeration system programs of

Grant, Faflick, and Feurzeig (1971).

If this work proves successful, we have the choice of either a

horizontal expansion to include the other identified aspects of

word problem targets of difficulty (multiplication and division

problems not covered in the work with intensive quantities, such

as those involving combinatoric models, etc.) or a vertical

expansion to extend the earlier representations into algebra, to

the general function concept, and to non-linear quantitative

relationships. Our preliminary plans are to expand horizontally

with similar -genre software, but a firm decision awaits the

results of the planned development and testing.

13
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2 Prnimbr+ 84-mr-fir+n Prvinf=

2.1 Our Earlier Work and Data.

Early deliberations of the groups defining the research agendas

for the Educational Technology Center found a strong sense among

practitioners that classic word problems are a source of special

difficulty for students at all grade levels. Further discussion

narrowed the types of problems to be addressed to single step

word problems, i.e., those requiring the application of a single

operation. Subsequent work (Schwartz, 1984) took the form of a

pair of studies designed to fix empirically the semantics of

problems (i) that students generate in response to a request for

4
problems requiring a single operation, and (ii) that students

have difficulty in solving. The first study collected and

classified student-formulated problems according to certain

taxonomic schemes devised by the researchers and appearing

elsewhere in the literature (e.g., Riley, Greeno, & Heller,

1983; Carpenter, Moser, & Romberg, 1982). The second study

confirmed, at least at the aggregate level, that those problem

types not appearing among student-formulated problems were also

those that students .sere least able to solve.

This work thus helped identify more specifically the target of

difficulty by identifying certain categories of problems as

especially difficult while confirming the assertion that a

student's ability to recognize the contexts in which a

14
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particular operation applies (and thus solve word problems

requiring that operation) is tied to his or her cognitive

repertoire of situations calling for that operation.

We followed upon these discoveries with a tentative decision to

create a multidimensional "problem web" -- a software

environment in which a student, when confronted with a word

problem that he or she could not solve, could systematically

move along certain dimensions ordered by problem difficulty to a

solvable problem. The student would then take the understanding

developed in that problem situation (perhaps augmented by

further exploration in the problem web) to help solve the

original problem. The web's dimensions would be determined by

(0 the semantic categories discovered and confirmed in the

empirical work, and (ii) certain numerical characteristics of

the problems (e.g., computational complexity, f4miliarity of

numerical relationships among the referents, etc.) However, the

number and irregularity of the actual task variables in the

problem domain refused to accomodate a sufficiently simple and

clean taxonomy which could then be mapped onto the dimensions of

a problem web.

Nonetheless, the attempt to sort out the problem domain has

yielded valuable insights and partial taxonomies (some of which

appear below) that will serve us well in the next phase of our

Project. Indeed, most of the web work was prerequisite to our

current work.

15
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2.2 Our Philosophy of Quantity.

During the past decade L consensus has developed among the

mathematics education community that calls for more attention to

the applicable aspects of mathematics, a consensus based mainly

on ubiquitous reports of student inability to apply the meager

mathematics that thFy do learn to their wider world of

experience. Our view of this situation goes a step beyond the

assertion that mathematics is best learned in context, to the

assertion that THE ELEMENTARY MATHEMATICS OF SCHOOL SHOULD NOY

BE, AS TACITLY ASSUMED, EXCLUSIVELY THE MATHEMATICS OF NUMBER

WITH APPLICATIONS REGARDED AS SEPARATE, BUT RATHER SHOULD BEGIN

WITH THE MATHEMATICS OF QUANTITY, SO THAT THE MATHEMATICS AND

ITS "APPLICATIONS" ARE OF A PIECE FROM THE VERY BEGINNING.

The formal outline of our notion of quantity was sketched in the

November, 1984, Technical Report, particularly Appendix A

(Schwartz, 1984), and in (Schwartz, 1976). We shall not repeat

its description here, but instead simply will note that the

concept of quantity has a distinguished lineage, tracing back to

Gauss and Bolzano (cited in Janke, 1980), Lebesque (1933-36),

and Whitney (1968a, b), and that its use has been advocated in

educational proposals as far back as the turn of the century

(Speer, 1R97). Note also that Freudenthal (1973) had also

developed a formal treatment of quantity paralleling that of

Schwartz. In fact Freudenthal (1973, p.207) is cited by UsiskA7.

and Bell (1983b) as follows:

The argument of rigor against computations with concrete

16



ETC Technical Report 14 Word Problems Project

numbers (what we have called quantities) is completely
mistaken. Concrete numbers are absolutely rigorous, and
the resistance of some mathematicians to them is sheer
dogmatism.

In fact, as argued by Janke (1980), Gauss' definition of

quantity - the result of more than thirty years' effort

comprised a systematic response to a crisis in the foundations

of mathematics and its relationship with science that rivaled in

depth the much more heralded crisis a century later. Whereas

the later crisis generated an abstract and highly formal

set-theoretic and logicist response setting mathematics free

from its experiential origins, the earlier crisis led to an

at+2mpted union of mathematics with its origins in the

understanding of the natural world that was philosophically

quite sophisticated in its accomodation of the new abstract

mathematics of the time (e.g., Gauss' invention of the geometric
'I

representation of complex number.$). The logical and

metamathematical contents of either approach are much less

important to us than their cognitive-developmental, curricular

and pedagogical implications, which in our view greatly favor

the earlier as a starting point, particularly given the

widespread student inability to apply mathematics.

2.3 Our Philosophy and Application of Educational Technology.

While the approach of the Center as a whole is deliberately

eclectic, based on the breadth o: application arenas it is

addressing, we have chosen a particular approach based on the

needs of our particular domain of inquiry, multiplication and

. 17
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division word problems involving intensive quantities. We see

enormous, eit., yet untapped, potential in the next generation of

school microcomputers' ability to provide multiple and

simultaneous representations of important mathematical ideas.

Even more important is their ability to provide explicit, easily

controllable coordination of such representations, an ability

not possessed by earlier generations of school microcomputers.

Discussions with industry decision makers strongly suggest that

the new microcomputer software environments will be distinctly

Macintosh-like, including new Apple computers compatible with

the educational standard Apple II family. Hence our prototype

development will take place on a Macintosh computer in a new

structured BASIC that utilizes the Macintosh windowing and mouse

interface4routines, versions of which are necessary for the

applications that we have planned. Although immediate =hoc/

application of our development efforts is clearly not intended

or expected, it is comforting to know that the next generation

of school microcomputers is likely to have the multiple

representation capability that we regard as critical to our

approach.

Since the software environment that we envision for our

mathematical representations is, by virtue of the Macintosh, not

new, it is perhaps wise to emphasize the educational &Ad

cognitive novelty of its features. Except for very modest

educational examples of linked representations such as the

simultaneous presentation of small amounts of data and their

18
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graph, or small numbers of iconic screen objects and their

simple additive combinations (in the software cited in the

Overview), no significant interaction of several simultaneous

representations on a single screen has been possible. On the

other hand, recent research has shown that the cognitive

coordination of several representations is critical to success

in physics (Chi, et al, 1980; Heller & Reif, 1984), and in

complex mathematical domains such as the domain of rational

numbers, for example, where several subconstructs and their

different representations must be learned and coordinated (Post,

et al, 1985; Behr, et al, 1983; Lesh, et al, 1985; Lesh, Landau,

& Hamilton, 1983). As indicated below, the operations of

multiplication and division may likewise be decomposable into

subconstructs based on usage-types (Usiskin & Bell, 1983a, b, c)

and °ther more structural features (Vergnaud, 1982, 1983).

Again, the different cognitive structures associated with these

subconstructs and their different representations need to be

learned and coordinated.

Furthermore, this parsing of mathematical concepts into distinct

subconstructs with partially separate developmental

trajectories, examining their individual features, applications

and representations, and then devising cybernetically

coordinated representations to tie them cognitively togther,

may, in fact, be repeated all across mathematics. This would

render- the new microcomputer capacity that we will be exploring

and exploiting all the more important to understand. See

Section (4) for more discussion of these issues.
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2.4 Coherence in the Mathematics Curriculum.

Common wisdom on the subject of curricular coherence calls for

logical vertical coordination of topics, spiralling where

possible, ease of access, and an absolute minimum of dead ends

or abrupt notational/representational shifts. Implementation of

this wisdom is codetermined by the perceived utility and

learnability of the mathematics under consideration.

Historically, this implementation has been little informed by an

understanding of the underlying cognitive issues and has been

only marginally affected by information technologies (e.g.,

calculators). A radical change in both aspects of this pattern

is now possible if not likely, at least in the domain of

interest to the Word Problem Project.

Since we have taken as our base task the deliberate enrichment

and coordination of cognitive models of intensive quantity, the

question arises which external representations of this

mathematical concept to use? THE PRINCIPLE OF MAXIMAL

LONGITUDINAL COHERENCE ARGUES FOR THOSE REPRESENTATIONS THAI

SUPPORT WIDE APPLICATION OUTSIDE OF MATHEMATICS AND CONTINUING

GROWTH WITHIN MATHEMATICS. This is our primary curricular

justification of the four representation types listed in the

Overview.

Our choice of the multiple-mindow microcomputer environment as

the chief pedagogical tool in this endeavor then aids in

20
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achieving the longitudinal coherence in several ways:

(i) We can create a range of representations differing in

concreteness and complexity that can connect to those the

students already possess.

(ii) We can explicitly link these representations so that a

student can "ramp up" from his or her more primitive

representations to more abstract and flexible ones.

Facilitating the ability to move to more powerful

representations should make the latter more accessible at an

earlier age, enabling us to introduce potently general models

far earlier than commonly attempted, models such as the

graphical model of intensive quantities. (In this

representation, the intensive quantity "10 mi/hr" can be viewed

as the slope of a straight line in the first quadrant of the

coordinate plane whose horizontal axis is measured in hours and

whose vertical axis is measured in miles.)

(iii) In domains such as the rational number domain where

several subconstructs are involved, each with its own "best" or

most natural representation, these different representations can

be more dynamically coordinated, particularly through the use of

simultaneous representations.

(iv) In some cases, where operations with a particular idea is

computationally messy and as a result postponed, we may be able

to irtroduce it and tie it to its natural conceptual relatives
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by leaving the computations to the software.

In all the above examples, the technology may provide the

vehicle for curricular coherence that has been historically out

of reach.

3. Multiplicationt. Division and Intensive Quantitities:

A Selected Theoretical Review.

3.1 An Overview of the Pedagogical Problem.

The one clear consensus of earlier and current work on

multiplicAtion and divi.sion word problems is that many students,

grades four and onward, have inadequate cognitive models of

multiplication, division, and intensive quantities - these

operations and quantities have limited conceptual content for

them. The recent work of Fischbein, et al (1985), Bell,

Fischbein and Greer (1984), and Greer and Managan (1984) shows

that the primitive models that students do possess constrain

their ability to solve word problems. More particularly, their

research has shown that students' primitive models of

multiplication are based on repeated addition, and that their

models for division are mainly based on the partitive

interpretatation. Fischbein and Greer each used problems

involving choice of numbers that violated the assumptions of

those primitive models (e.g., fractions or decimals) to expose
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the weaknesses of existing student cognitive models. In

additions our work has shown (1) that multiplication or division

word problems involving intensive quantities are especially

difficult, even for above-average 12th graders (Schwartz, 1984),

and (2) student-formulated p:TIblems contain relatively few

non-partitive division problems and a very limited variety of

multiplication problems. This last result dovetails well with

the Fischbein-Greer results.

The consensus view is that the building of appropriately

flexible cognitive models of multiplication, division, and

intensive quantity is not easy, because at an early age the

materials and situations leading to the building of cognitive

models must necessarily be simple. Yet the early models seem to

control what kinds of models are built or applied later. The

problem is well drawn by Fischbein, et al (1985, p.15):

What are the sources of the primitive models? Two
explanations seem plausible. The most direct explanation
is that the model reflects the way in which the
corresponding concept or operation was initially taught in
school. As the first interpretation learned by the child,
it tends to be strongly rooted in his or her mental
behavior... A second explanation is that these primitive
models are so resistant to change and so influential
because they correspond to features of human mental
behavior that are primary, ,Iatural and basic. People
naturally tend to interpret facts and ideas in terms that
are behaviorally and enactively meaningful. This tendency
may maintain the primitive models above and beyond any
formal rules one may have learned. In our view, both
explanations are correct.

They go on to point out that as first choices for the

operations, these models make perfect sense, especially from a

Piagetian perspective of mental operations as internalized
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external actions. But then, as they put it (p.15) "teachers of

arithmetic face a fundamental didactical dilemma." Finally,

after noting that later instruction and cognitive development do

not undo the influence of the primitive models, they conclude

the following (p.16):

Our findings show that the dilemma is much more proftnd
than it might appear at first glance. The initial
didactical models seem to become so deegly_rooted in th
learner's mind that they_continue to exert an unconscious
control over mental behavior even after the learner has
acquired formal mathematical notions that are solid and
correct. (Their emphasis)

Our development of new forms of linked-representation software

is directed at this most difficult problem. Indeed, we feel

that two critical aspects of the problem are vulnerable to a

software assault: insufficiently linked and coordinated

cognitive4representations, and numerically limited

exemplification of each model. But before detailing our

proposed attack on the problem, we offer a more detailed

analysis of the relations between certain cognitive models and

certain of our previously developed word problem task-types.

Although our first cognitive model building work is directed at

intensive quantities, the operations of multiplication and

division are intimately related to intensive quantities and help

comprise a natural family of issues based on a set of

interrelated concepts developing within student over a period

of perhaps ten years. As a matter of fe.7t, Vergnaud's unifying

notion of conceptual field applies - in particular, we are

dealing with the conceptual field of multiplicative structures

as defined in Vergnaud (1983).
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3.2 Intensive and Extensive Quantities: Semantic Issues

To date we have given serious attention to two semantic factors:

(i) the tyge of referent is it an extensive or intensive

quantity;

(ii) the relation between the referents in the problem.

Since a guantity is in fact a pair of things, a magnitude M and

a referent R, the referent for an intensive quantity involves

two entities, say N and D (Schwartz, 1976, 1984). In fact there

is also a third entity to deal with in the intensive case, the

relationship between N and D. Given that there are more things

to keep track of when dealing with intensive vs. extensive

quantities, and these other features of the quantities may have

a significant influence on how a student approaches a problem,

it is not surprising on these grounds alone that problems

involving intensive quantities are generally harder except in

those multiplication problems where the intensive quantity is

familiar enough to be well "chunked" into a single familiar

"rate" entity such as price or speed. (There are several other

factors relating to problem difficulty such as imageability and

whether the problem calls upon the concepts of ratio, proportion

and division. We will dAscuss these below.)

A student's cognitive model must be somewhat more elaborated to

handle unchunked intensive quantities. This is what was

predicted and observed regarding both measures of problem

difficulty in both earlier studies (Schwartz, 1984). Moreover,
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the necessary cognitive model elaboration would be expected to

evolve with age and mathematical experience, and this likewise

agrees with the data, especially with the "mast intensive" of

prt.jlem types, those involving the quotient of one intensive

quantity by another ("I/I" problems). However, even in the 11th

and 12th grades, performance on such problems with congenial

numbers was far less than satisfactory. Students obviously lack

functional models of intensive quantities to apply in such

situations ind have difficulty in coordinating their models of

division with those of intensive quantity.

Given the two referents N and D for a given intensive quantity,

we have already observed (Schwartz, 1984, p.18) that they can be

related in several ways at differing levels of "strength." For

example, one referent may physically contain the other (candies
4

per bag); one may contain the other more abstractly (children

per family); one may be ordinarily related to the other in a

familiar way (tires per car) or in an uniniliar way (cars per

tire); one may not normally be related to the other (trees per

heartbeat). The two referents may also be connected together in

a pre-constructed linguistic entity such as speed or price

(Bell, Fischbein & Greer, 1984). Moreover, the individual

referents can be of varying familiarity, abstractness, and

imageability. Given these semantic dimensions of referent

relatedness in an intensive quantity (derived from the "web"

work mentioned earlier), we have the basis for dimensions of

relatedness for the two referents of a given multiplication or

division word problem. Such orderings of problems according to
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semantic relatedness dimensions guide current empirical work

associated with the task development for use in software.

especially regarding choices of concrete representations.

3.3 Multiplication.

3.3.1 Size change, conversion rates, and "scalars."

The operation of multiplication has been analyzed according to a

variety of principles over the years: applications, mathematical

structure, place in the curriculum, cognitive or developmental

features, etc. We shall briefly recount some of the taxonomies

in order to provide a context for our current investigations

i'volvinh intensive quantity and for extensions of these

investigations that focus more on the operations.

Two of the most ambitious and cimplete taxonomies based on

application-types are those of Usiskin & Bell (1983b) and a

similar, but less explicitly taxonomic analysis by Freudenthal

(1984). Usiskin and Bell describe three basic types of

multiplication useage: siz: change, acting across, and rate

factor. We shall review their taxonomy in the light of the

nature of the quantities involved. The major difference between

their application-based account and ours has to do with the idea

of "scalar."

SIZE CHANGE, according to Usiskin and Bell, involves multiplying
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a quantity by a (referent-free) scalar, with no resulting unit

change. It changes only the number of the quantity and not the

referent. While in such contexts Usiskin and Bell (as well as

many others) invoke the -,;.-tion of scalar as pure quantity - with

no referent associated with it our framework consistently

associates a referent with every number in an applied context: a

consistent arithmetic of quantities avoids the ambiguities

alluded to by Usiskin and Bell when the notion of a

referent-free scalar is introduced, especially in the context of

multiplication.

To be more specific consider the following two size change

occasions to apply multiplication:

(i) Charles is 3 times as heavy as his son, whose weight is 60

lb.

(ii) Charles is 3 times as tall as his son, whose height is 24

in.

What is Charles' weight (height, resp.)?

The arithmetic role of the "3" in each case is as a numerical

factor and is the same in both cases; but its guantitative role

is different. in each case. In (i) the "3" is acting on units of

weight (but not changing the unit) and has a referent of lb/lb.

The role of the seemingly superfluous referent is entirely

consistent with the unit "bag" in the multiplication 3 bags

times 5 candies/bag, which yields 15 candies. In the weight

case, the referent structure is 3 lb (in Charles' weight) per lb

(in his son's weight). This is entirely different from the
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quantitative role of "3" in the height case, where the referent

is in/in (3 in. in Charles' height per in. in his son's height):

3 lb(in Charles' wt) /lb(in son's wt) x 60 lb(in son's wt)

= 180 lb(in Charles' wt)

3 in.(in Charles' ht)/in.(in son's ht) x 24 in.(in son's ht)

= 72 in.(in Charles' ht)

The parenthetical extensions of the referents are included to

clarify the real meaning of the "scalar" as an intensive

quantity. Notice also from this perspective that the size

change in Neight, say, is being described as "intensive" growth

that is, each lb in the son's weight is being changed to 3 lb.

(Visualq, we could think of this as a single entity growing to

3 times its previous size.) This is in distinction to

"extensive" growth, which would be described as a triple

replication of the entire 60 lb extent of the son's weight

(visually, a single entity being replaced by 3 copies of

itself).

Not only is attachment of referent to the "3" consistent with

the larger theory of quantity in which this case is embedded, it

also clarifies the conversion rate case that Usiskin and Bell

find ambiguous with respect their taxonomy. Suppose we want to

convert Charles' height measure from inches to feet. We would

multiply 72 in by 1/12 ft/in to get 6 ft. This multiplication

statement has exactly the same intensive quantity structure as
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the previous statements. The difference is that a change in

units for a fixed height results whereas in the previous

(height) case, the height changed and the units were fixed. In

both cases we have the product of an intensive quantity with an

extensive quantity. The conversion factor case is distinguished

as an intensive quantity by the common attribute of the two

parts of the referent (length in this case).

Similar analyses apply to size change expressed through

percentages. We regard Usiskin and Bell's "scalar" percent as

an intensive quantity in diguise.

Size change can also apply to intensive quantities: If a

certain job pays 4 dollars/hr and I get time and a half for

overtime,iwhat is my overtime rate? Answer: 1.5 (dollars/hr) /

(dollars/hr) x 4 dollars/hr = 6 dollars/hr.

3.3.2 Acting across and rate factor :ses.

ACTING ACROSS involves the product of two quantities, whose

referents may be entirely arbitrary and whose product referent

is the product of the referents. It corresponds to an E x E

multiplication (the product of two extensive quantities). If

the referents have spatial dimensions, then the product referent

has, of course, a spatial dimension equal to the sum of the

dimensions of the factors. Some forms of acting across involve

quantifying the set of all possible (ordered) pairs of elements

from two sets, especially in combinatoric situations - see the
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"outfits" problem below. Other examples of acting across abound

in the sciences, often with special units designating the

product referent: 110 volts x 8 amperes = 880 watts (of power);

10 pounds (of force) acting across 5 feet equals 50 foot-pounds

(of work). As is well known, the different types of acting

across are associated with widely different cognitive structures

and processes and vary considerably in their learnability and

their involvement with other specialized knowledge.

The RAT1i FACTOR use class identified by Usiskin and Bell

includes the product of an intensive quantity by an extensive

quantity where the denominator referent of the intensive

quantity matches the referent of the extensive quantity, thereby

yielding an extensive quantity for the product (E x I = E).

This use4class also includes IxI applications of the following

sort: If a team sells an average of 6000 tickets/game at 5

dollars/ticket, what is their average revenue per game?

Of special interest to Usiskin and Bell is the conversion rate

case, where I is a unit conversion factor, e.g., 3 ft/yd (see

the size-change discussion). They regard this as the quotient

of two quantities, 3 ft by 1 yd. From this point of view, since

numerator and denominator are equal as quantities in this case,

their quantity quotient is the scalar 1. But the intended

effszt of multiplying a given extensive quantity by such a

factor is to change the referent (unit) of the original quantity

to that of the numerator of the conversion factor from yards

to feet in the given example. Hence they suggest that
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conversion rates share some of the properties or scalars and

some of intensive quantities, so their taxonomy is not

disjunctive.

Our point of view is that both size change and rate factor uses

of multiplication, including the conversion rate special case of

the latter, are simply products usually involving an intensive

and an extensive quantity, although on occasion both may be

intensive. This is not to deny, however, that important

cognitive differences exist among these uses. In fact, when

isolating the important cognitive differences in the

applications of multiplication (and the other operations for

that matter), the discriminations must be much finer that any we

have discussed thus far in the Report. In the longer run the

term "scalar multiplication" is likely to survive our

theoretical subsumption of its meaning, so we can only hope that

it will come to be used within this more consistent and

economical framework - as a special kind of intensive quantity

whose referent consists of a "numerator" and "denominator" that

are equal.

3.3.3 Other multiplication use issues.

We would note that Vergnaud (1983) and others (notably Bell,

Fischbeir and Greer, 1984), have separated out area and volume

situations for special consideration and study because of their

special features. As Vergnaud's work shows, these concepts

develop and differentiate only gradually among most students.
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Another special feature of the spatially related models of

multiplication are their extremely wide utility in madelino

(ther forms of acting across serving a dual modeling role: one

as models for multiplication, and second as models for other

multiplicative phenomena. Area as the product of two linear

dimensions, for example, can be used to model a variety of

products, especially when at least one factor happens to be a

function of time and where one linear dimension is chosen to

represent time: distance traveled as a function of time, force

as a function of acceleration, work as a function of force over

time. The power of this model is its extendability to

non-constant and nonlinear functions via integral calculus.

Others have categorized types of multiplication more by semantic

featurestof the referents as found in school word problems and

their place in the curriculum (Kansky, 1969; Kennedy, 1970;

Swenson, 1973; Vest, 1968). Generally, these analyses do not

clarify underlying issues beyond the analyses already given, but

do expose other assumptions regarding the authors' curricular

preferences. For example, they almost all give repeated

addition as a primary category, frequently identify

distance-speed problems or unit price problems as categories,

and taxonomize on the basis of number size of the factors.

Sutherland (1947) analyzed textbook multiplicative ward problems

in grades 3-6 and found the great majority involved

distance-speed, item pricing and repeated addition. No examples

of acting across were found. We would suspect a similar pattern

holds today.
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3.3.4 Multiplication as repeated addition vs ExE

multiplication.

Usiskin and Bell deliberately avoided making rE :eated addition a

use class (although an earlier analysis by Usiskin (1976) did

separate out repeated addition) because (1) it cuts across the

other use classes if small whole numbers are involved, (2) it is

only a computational feature of the problems in which it

applies, and (3) all the repeated addition situations are

subsumed in the other categories. However, as is emphatically

clear in the results of Fiscbein, et al, (1985) and Greer and

Managan (1984), when multiplication is introduced as repeated

addition or perhaps even identified with repeated addition

(Grossnickel and Reckzeh, 1973 cited by Usiskin and Bell,

1983b), the implicit numerical constraints of the repeated

addition model are then built into student cognitive models of

multiplication. As a result the students' ability to recognize

the multiplication inherent in problem situations is likewise

constrained. Since so many situations do not fit the repeated

addition model, this is a serious handicap in problem solving, a

handicap camouflaged by the predominance of repeated addition or

formulaic approaches to school word problems involving

multiplication. Software development involving models for

multiplication should certainly take this into iccount.

Our data from student generated problems (Schwartz, 1984)

indicate that the acting across, or ExE type of multiplication,
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is not a ready part of students' repertoire, a fact fitting the

poor rcprc=critcgtiOn of ExE problems in the curriculum. Our data

suggesting that the IxE type of multiplication is easier and

more commonly a part of student multiplication models may at

least in part be a consequence of our (since revised) decision

to go with purely integral coefficients, as the Fischbein and

Greer results imply. (See also Ekenstam & Greger, 1983, for

dramatic evidence of the constraining effect of the repeated

addition model.) Thus .:he students' assumptions of the

multiplication-as-repeated-addition model were never challenged

EXCEPT in the ExE case, where a different model needs to be

invoked, the combinatorial version of the acting across model.

There is another issue connected with the combinatorial ExE case

relatingito cognitive development in the classic Piaget-Inhelder

sense. They found that the ability to deal with combinatorial

possibilities was developmentally sensitive, and could be

associated with the transition to "formal thought." We have

some tentative clinical evidence from interviews involving a

small sample of above average 3rd, 4th and 6th graders that

students may be able to generete and apply tree diagram

representations to solve such problems as:

Betty has 5 blouses and 3 skirts. How many different outfits

can she make?

The students not only spontaneously generated tree diagrams, but

were able to generalize from them to solve parallel problems
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involving numbers too large for convenient visual description.

We wish to make one last point regarding the dominance of the

repeated addition model and the understanding of cos7ficients of

variables in algebra. Strong evidence supports the hypothesis

that the repeated addition model of multiplication in

arithmetic, when coupled with an introduction to algebra that

likewise presents "7X" as "seven X's," yields a deep

misunderstanding of coefficient multiplication that identifies

it with the adjectival use of number (Kaput & Sims-Knight,

1983). In turn the adjectival use of number is deeply embedded

in natural language syntax (Schwartz, 1976; Nesher & Schwartz,

1982). The result of building coefficient multiplication on a

natural language-based schema, given other weaknesses in the

understanding of variables, is the widespread and well

documented "Students-Professors problem reversal" (Clement,

1982). This reversal results when students are asked to write

an algebraic equation that expresses the following statement:

"For every 6 students at a certain university, there is 1

professor." They are told to use S for the number of students

and P for the number of professors. The common error is to

write "68 = P" and thereby treat 6 as an adjective and S as a

label for either a student or a set of students. Use of the

letters "x" and "y" did not significantly change the outcome.

We would suggest, therefore, that enriching student models of

multiplication may be one half of solving the

"Student-Professors Problem" problem. The other half is
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enriching and strengthening student concepts of variable.

3.4 Division and Intensive Quantities.

3.4.1 The partitive and quotative models.

Before relating division to intensive quantity, we shall first

review the two models normally associated with division, the

partitive and the quotative (also known as the "measurement"

model). The partitive is thought by some to be the strongest

among children, perhaps because it is based on the presumably

easier to understand "fairshare" idea. Later we shall further

subdivide the partitive model into two types, the "share" and

the "cut. models.

Partitive interpretation of p/q:

Here an entity or collection is to be divided into a number of

equal parts, and p/q represents the amount in each part divide

by the number of parts. For example: (A) A mother has 15

candies to give equally to her 3 children. How many should each

child get? Or: (B) 12 people want to make 3 teams. How many

people should be pLt on each team?

The numerical assumptions of this model are:

(i) p > q

(ii) q is a whole number

(iii) pig 4 p

3 '4
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Ouotative (or "measure") interpretation of p/q:

Here one wants to know how many entities of size q are in an

entity of size p. if discrete objects are involved, one divides

by the number of objects per group. For example: (A) A mother

has 15 candies to put into bags that will hold 5 candies per

bag. How many bags will she need? Or (B): If there are 12

people are to divided into teams of 3 people, how many teams

will there be?

The numerical assumptions of the quotative model seem to be

simply that p > q, although if p/q is a whole number (i.e., no

remainder), then the division can be interpreted as repeated

subtraction.

3.4.2 Intensive quantities and the partitive model: reanalysis

of earlier data.

Note first that the basic ideas of partitive and quotative

models assume division of quantities rather than of numbers. We

now interpret them in terms of our explicit theory of quantity.

First of all, the partitive case involves an EIE situation

leading to an I quotient:

(A) (15 candies/3 children] = (5 candies/child]

(B) (12 people/3 teams] = (4 people/team]

Both are partitive E/E=I situations. Does the partitive model

extend to I/E situations? The answer appears to be yes,

although a more abstract version of partition is involved. For
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example, consider the following problem, #7 from Study B

(Schwartz, 1984), slightly modified:

A ball is dropped from the roof. After 3 seconds of constantly

increasing speed it is falling at a rate of 96 feet per second.

How fast is the speed of the ball changing?

A reasonable partitive interpretation of this situation regards

the question as asking how the increase in speed is distributed

across the 3 seconds or how it is partitioned into 3 pieces.

A similar abstract partitive interpretation can be applied to

I/I problems where each intensive quantity has the same referent

in its "denominator." The following I/I problem, # 10(a) from

Study 8,011ustrates the analysis:

Stephen drives 200 miles per week, and spends $16 per week on

gas. How many miles does Stephen drive on $1 worth of gas?

Here the "per week" "cancels" from the quotient, formally as

well as semantically, leaving an E/E question He drives 200

miles on $16. How many miles can he drive on $1? The solution

can be thought of as determining of the 200 miles driven "how

much does each dollar get." The relatively low percentage of

correct solutions to this problem indicates that students do not

easily see this as a partitive problem. Either the semantic

"cancelling" of tne "per week" information (the discarding of

extraneous information) causes cognitive overload difficulties,



ETC Technical Report 37 Word Problems Project

or the abstract and complex nature of each intensive quantity

obscures the partitive nature of the situation. More recent

data indicate that high ability 12th graders regard this

situation in partitive terms (See below.)

A simpler I/I example was provided by a student who generated

the following problem in Study A (Schwartz, 1984):

A boy produces 24 paper airplanes each day. If he works 6 hours

a day, and at a constant rate, how many planes does he make each

hour?

Tha answer can be obtained by asking how "the" (after

cancellation of the "per day") 24 planes are distributed across

the 6 hours.

The I/I situation where the intensive quantity denominators are

not the same is much more problematical and was not represented

in either study.

Bell, Fischbein and Greer (1984) have examined the concept

"rate" and division in a manner close to our analysis. Thus

they distinguish speed = distance/time as partitive and time =

distance/rate as quotative.

3.4.3 Intensive quantities and the quotative model: reanalysis

of earlier data.
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The quotative model involves an E/I situation leading to an E

_z__....
.quo( A =gm

(A) [15 candies/5 candies per bag] = [3 bags]

(B) E12 people/3 people per team] = [4 teams].

Both of these E/I examples, and all the others appearing in our

earlier two studies generated either by us or by students

(Schwartz, 1984) can be regarded as requiring the quotative

model of division with the following possible exception:

Jim has $20 dollars (sic). Sarah has $5.00, how many times as

much does Jim have?

It seems reasonable to regard this question as asking "How many

five dollars are there in 20 dollars?" The answer is best

thought tf in terms of an intensive quantity:

20 dollars/5 dollars = 4 dollars (that Jim has)/dollar (that

Sarah has)

It is worth not4ng that the pure number quotative version is the

model most commonly used in school when discussing "division

facts" and teaching the mr4t common division algorithms. This

fact, coupled with the apparent predominance of the partitive

model as students' primitive model of division, may lead to a

failure of communication between students and the division

curriculum. Considerable work has been done in earlier decades

relating the two models to appropriate algorithms (Van Engen &

Bibb, 1956; Dilley, 1970; Kratzer, 1971). Failures of fit

between student models and division algorithm teaching may also
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affect the interpretation of remainders in applied problems

(Silver, 198:.2).

3.4.4 Th.: partitive vs quotative distribution of student

generated problems.

We reexamined the student-generated division problems from Study

A (Schwartz, 1984) to determine whether they confirm tentative

suggestions in the literature that the partitive model is the

more primitive than the quotative in the sense of developing

earlier and therefore being more primary in students'

conceptualization of division (e.g., Fischbein, et al, 1985;

Silver, 1985). Our data strongly support this assertion. Of 81

problems generated by students from grades 4 to 13, 81( were

clearly partitive, 177 were clearly quotative, and the other 27.

were the two problems discussed above. There was no obvious

decline in percentage of partitive problems with increase in

age. See Appendix A for numerical details.

This conclusion is at some variance with the results of Bechtel

and Weaver (1976) who gave 2nd graders division problems based

on the two models in search ,f order and interference effects

that might provide the basis for a curricular decision on which

model srould be introduced first in schools. They found that

studen,g; t&;-ided to get slightly higher mean scores on quotative

problems. However, their results are likely to be strongly

affected by their use of concrete manipulatives and other task

variables and may not generalize to less concretely presented
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problem situations and solution modes see below.

3.5 Two Versions of the Partitive Model: Share and Cut

In attempting to determine more clearly how the the models for

division might interact with the semantic features of different

kinds of intensive quantities to affect problem difficulty, let

us examine the kinds of actions that might be the basis for a

primitive cognitive model associated with partition.

Suppose a student is using a physical action-based cognitive

model to carry out a division problem. If it is a quotative

problem (How many groups or entities of size q are there in a

set or entity of size p?), most researchers (e.g., Bechtel &

Weaver, 1976; Moser, 1952) agree that the action will be

repeated subtraction (of the groups of size q from the group of

size p). On the other hand, if it is a partitive problem

(partitioning a set or entity of size p into q groups entities

of size to be determined), it appears that there may be two

types of actions.

The first, and perhaps the more primitive (we have no first hand

data supporting this conjecture) involves counting down by units

of one, distributing the elements into the q groups. We refer

to this as "share partition."

If there is a good marker or signal when a given stage in the
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sharing is completed (when each of the q groups has received one

additional element), then keeping track of the process is

4aci1itated. Such occurs, for example, when the probiem context

involves a true distribution scheme with discrete elements to be

distributed into explicitly defined recipients (e.g., candies

per bag; or candies per child). By contrast, if the problem

context violates any of these givens, the execution of the

distribution requires more cognitive processing, or more

structure to be provided by the person performing the action.

The second model of partitive division, and perhaps a cognitive

consolidation of share partition, is "cut partition." In cut

partition the set or substance being divided is cognitively

"marked" at its "cut points" and the amount in each subsection

is counted or otherwise measured. We have found clinical

evidence for cut partition in interviews with third and fourth

graders as well as in a task involving twenty advanced placement

calculus twelfth graders.

The 12th graders were requested to show on paper how they

thought of an I/E division problem: almost all drew a

representation of the I quantity that they then subdivided using

a visual partition, even when they were forced by the size of

the numbers involved to draw a representative sample of the

entire quantity before partitioning it to indicate a

representative element of the partition. Followup questions

helped confirm that their representations underlay their

solution not only of the problem at hand, but other division
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problems as well.

Several grade school students gave clinical evidence of thinking

of a cut partition in working out a sharing problem, which seems

to indicate that the cut partition may develop early from its

apparently more concretely enactive relative, share partition.

In particular, a third grader actually drew a cut partition

while solving a sharing problem.

The above kind of analysis and clinical work should provide

reasonable clues regarding which semantic or contextual features

of a division problem might bear upon its difficulty. For

example, if the entity to be partitioned is not "mentally

divisible" into distributable elements, or, as suggested

earlier,Of there is no natural or familiar means for receiving

such elements in a distribution partition, or if there are no

ready cues as to which group is which, or if the quantity is not

easily ima,ed or "cut," then cognitive actions are required to

compensate for the absence of support for either partition

model. Such is more likely the case, as seen earlier in the I/E

and I/I cases, when intensive quantities are involved in the

dividend of the division problem. Such clues regarding features

bearing upon problem difficulty are also clues to the

construction of appropriate software learning environments.

Similarly, the repeated subtraction version of the quotative

model requires the creation and maintenence of a temporary unit

to be subtracted off the original quantity and an intermediate

4
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recording act to keep track of how many of such units have

already been subtracted. Further, there must be some indication

of Nhen the process is complete - or whether a remainder is

involved. The cognitive load here appears greater than in

either partitive case, although again, we must identify those

semantic or contextual problem features ,Mich might aid in the

process, e.g., how well held together is the unit, how imageable

is the quantity being subtracted from, are they continuous or

discrete quantities, are there remainders, etc. (See Silver,

1985, regarding the vexing question of remainders and their

interpretation in differing problem contexts.)

3.6 Other Classifications of Division Processes and Problems.

The classifications by Usiskin and Bell (1983b) mainly parallel

their classifications of multiplication, although they

distinguish "ratio" and "rate" uses. They regard the former as

a comparison of quantities having the same referent, hence

results in a referent-free scalar (our view is that an intensive

quantity results). The latter (rate) involves two different

referents and hence yields an intensive quantity - unless the

division has an intensive quantity in either the numerator or

derominator, in which case the result may be an extensive

quantity.

Classifications by Sutherland (1947) break down into

"measurement" and "partition" and in fact amount to quotition
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and partition as outlined previously, although her subcategories

allude to many of the semantic distinctions that we have

examined regarding the types of quantities involved in a

division problem and the relationship between the two

quantities.

Zweng (1963) likewise used the same fundamental categories and,

in working with second graders, found that students' primitive

models of division were sensitive to the semantic factors we

have identified. For example, she found that of the following

two quotative problems, the second was easier:

(1) If I have 8 pencils and separate them into sets of two

pencils, how many sets will I obtain?

4

(2) If I have 8 pencils and put them into boxes, placing two

pencils in each box, how many boxes will be used?

As we have noted, the existence of a concrete "recipient" for

the pencils lightens the cognitive load. She found similar

results in partitive problems.

Zweng (1972) also points out that since the curriculum is not

often clear about the two interpretations of division, the

students also have dificulty. The difficulty is compounded by

the fact that the formal representation of the division in the

two types of problems is identical. Consider, for example, the

problem of cutting a 30 foot ribbon into pieces 8 feet long -
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how many pieces? - and the problem of cutting a 30 foot ribbon

into B pieces. - how long is each piece? The formal description

of the computation in each case is "30 divided by 8 equals n"

but the referents of the elements of the formal statement are

very different in the two cases. The differences show up

dramatically when students are asked to interpret the results,

confusing feet with pieces or vice versa. Zweng gathered data

on 2nd grade students who solve such problems (not involving

remainders) before they have formal instruction in division, and

who therefore use missing factor reasoning. She found that they

interpreted their solutions correctly. We would interpret this

finding in terms of the cognitive models that students at that

age have for multiplication. In addition to the simple repeated

addition model, they have an E x I model (number of sets times

the numbers per set). Thus by applying the missing factor

reasoning, the cognitive model for multiplication carries the

student to a correct interpretation - the student sets up the

appropriate product equation, each of whose parts has an I or E

interpretation, and then computes and interprets the missing

factor. Our clinical data on a 3rd grader who correctly solved

both a partitive and a quotative division word problem using the

missing factor method agrees with Zweng's data. Our earlier

data (Schwartz, 1984) also provides evidence of a stable E x I

model for multiplication, at least when familiar intensive

quantities are involved.

Zweng suggests, since division statements hide the two very

different meanings of division, that the teaching of division
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facts be dropped from the elementary curriculum and that more

time he spent with multiplication. Perhaps a better alternative

now would be to offer concrete representations of division that

do make the distinction clear from the beginning. In fact, we

expect our multiple representation software to assist in this

directly (see Section 4), in part by building systematically on

existing student models of intensive quantities.

Many other cognitive issues relating multiplication to division

have yet to be systematically explored, and we expect that this

will be a very active and fruitful area of research in the

coming years. See (Greer, in press) for an overview.

3.7 Multiplicative Structures, Ratio, and Proportion.

m

Vergnaud (1983, p. 127) defines a conceptual field as "a set of

problems and situations for the treatment of which concepts,

procedures, and representations of different, but narrowly

connected types are necessary." He defines the conceptual field

of multiplicative structures as that which involves

multiplication, division, fraction, ratio, rational number,

linear and n-linear function, dimensional analysis, and vector

space. Obviously, most of these are in some way or another

connected to the issues before us. Although we will not review

all of Vergnaud's work on this conceptual field, we will examine

more closely in the 'anguage already developed the first of the

three subfields he has identified. The three are isomorphism of

measures, product of measures (very closely related to the

ID
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Usiskin-Bell "acting across" concept), and multiple proportion

other than product. In each case where the word "scalar"

appears below, Vergnaud regards it as a pure number, whereas we

regard it as an intensive quantity the two parts of whose

referent are the same - see 3.3.1.

This analysis provides the foundation for our choice of

representations of intensive quantities to be employed in our

planned software environment - those representations that lead

directly to and support the evolution and application of a

powerful function approach to comparing quantities.

3.7.1 Isomorphism of measures: Multiplication.

Vergnaud offers the following four-celled array as an economic

means of theoretically framing a large class of multiplication

and division word problems.

M1 M2

1 a

b

The M1 and M2 very nearly refer to the referents of the numbers

on the respective sides of the vertical line. Vergnaud's

example of a multiplicative problem follows:

Richard buys 4 cakes at 15 cents each. How much does he have to

pay?

5 0
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a = 15 b = 4 MI = it of cakes M2 = 41 of cents (cost)

Vergnaud proposes that most students approach this problem in

one of two ways, either by extracting a scalar operator or by

extracting a function operator, with the conception of the

scalar operator developing ahead of the function operator.

(Again, we regard the scalar as an intensive quantity.) Each

can be viewed in terms of the diagram.

Ml M2

a

s b
bl x

Scalar Approach

MI : M2

1

b

Function Approach

"times a."

In the scalar approach the student extracts the multiplicative

relationship that exists within M1 between 1 and b and

transposes it to M2, establishing a corresponding (isomorphic)

multiplicative relationship between a and x based on the

(scalar) operator "times b." The assumed reasoning is "b cakes

is b times as much as 1 cake, so the cost of b cakes is b times

the cost of 1 cake." Here b is a scalar because it is the
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ratio of two quantities with the same referent (cakes): Eb cakes

/ 1 cakes].

In the function approach, the student extracts the

multiplicative relationship between 1 and a and transposes it to

create a multiplicative relationship between b and x. Each

relationship in the function approach crosses referents, from M1

to M2, relating two different quantities. Here "times a" is a

function operator in the sense of being the numerical slope of

the numerical linear function from M1 to M2. As a quantity, a

is intensive, with referent cents/cake.

3.7.2 Isomorphism of structures: division.

The same scheme can be used to ch:mracterize division problems,

which amount to traversing the diagrams in opposite directions.

Partitive types of problems have the following representation,

where the problem is to find the unit value x the amount that

"each gets," or the amount that corresponds to the unit of the

campsite measure. Thinking in terms of a function operator, the

problem is to determine f(1) given 1, a, and b = f(a).

MI M2

x = ;(1)

a b= c(a)

Partitive Problems Scheme

Jti
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Two problems illustrate the disc.rete and continuous cases:

Mom wants to give 12 candies equally to her 3 children. How

many will each child get?

a = 3 b = 12 MI = # children M2 = # candies

Nine large peaches weigh 4 pounds. How much does each one

weigh?

a = 9 b = 4 MI = # peaches M2 = # pounds

This class of problems can be solved by applying the "scalar"

operator 1/a to the number b, that is, finding what on the right

side of the diagram corresponds to the unit on the left. (Note

that a child may not actually be thinking in terms of the 1/a

notation this is merely used to describe the matheiatical

structure of the situation.) We also recognize this to be an

E/E division as described earlier. Although this is the

structural form of the solution, Vergnaud observes that younger

children are likely to use more primitive calculation stratE7ies

than actual division. e.g., missing factor approaches or trial

and error. In fact. as we have seen earlier in Zweng's work

(Zweng, 1963, 1972), fewer errors occur in such circumstances.

Quotative Problems.

Here the problem is to find x given f(x), a = f(1), and b = -c(X).
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mi = n2
.
.

1
.
. a =-c(1)

x . b = 4(-x.)

.

Quotative Problems Scheme

Peter has $15 to spend on miniature cars. If they cost $3 each,

how many cars can he buy?

a = 3 b = 15 M1 = # cars M2 = # dollars

Dad drives 55 miles per hour on the highway. How long will it

take him to travel 410 miles.

a = 55 b = 410 M1 = # hours M2 = # miles

The usual approach in these problems is to invert the function

operator "times a" to get "divide by a," which we shall denote

by 1/a, and then apply this "divide by" operator 1/a to b.

Vergnaud suggests that because of the inversion associated with

the referents in such problems (cars/dollar in the first problem

and hours/mile in Cle second), younger children find these

problems hard. Perhaps this is another way of accounting for

the fact that students' primary model of division may be

partitive..
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3.7.3 Isomorphism of structures: The general case.

The entire previous analysis can be generalized by replacing the

unit in each scheme by an arbitrary number. Consider the

following example.

M1 M2

a b

c x

The General Isomorphism of Measures

My car burns 10 gallons of gas every 250 miles. How much gas

will I use on a 3000 mile vacation trip?

a = 40 b = 10 c = 3000 M1 = # miles M2 = it gallons

When she makes strawberry jam, grandma uses 3.5 pounds of sugar

for 5 pounds of strawberries. How much sugar does she need for

8 pounds of strawberries?

a = 5 b = 3.5 c = 8 M1 = lbs of strawberries

M2 --- lbs of sugar

Just as in the earlier unit-ratio multiplication problems, these

problems can be approached either via a scalar or a function

approach. Our perspective on such problems is to emphasize

their functionality and their linea.-ity, because it is this

feature that is generalizable and that uses the more powerful

5o
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representations.

Vergnaud (1983) did detailed empiricrAl work showing the scalar

approach to be easier and preferred by students aged 11 - 15,

but with slo.. evolution toward the functional approach with

increase in age and mathematical experience. Most researchers

agree that in a typical missing-value proportion reasoning

problem, the relative livisibility of the numbers usually

determines which approach will be used.

Similar findings have appeared in the proportional reasoning and

ratio literature, with the terms such as "internal comparison"

(scalar) and "external comparison" (functional) appearing

frequently (see, for examp:.e, Karplus, et al, 1983; Noelting,

1980 a,b;4Tourniaire & Pulps, 1985). Note that "within" and

"between" are also used.

Lybeck (1978) has also made a parallel analysis based on

clinical observations of students doing classic proportional

reasoning task=- He ties the distinction to the historical

development of the function concept as a means of formalizing

proportional relationships, noting how, for example, Gallileo

described lengths of inclined planes of a fixed height and the

times needed by a ball to roll their length in scalar

proportional language (comparing distance to distance ratios

with time to time ratios), whereas Newton and Leibniz moved

toward functional descriptions (comparing distance to time

ratios - actually, comparing vertical changes in graphs with
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horizontal changes).

Freudenthal (1978) likewise distinguishes between the two ways

of comparing a pair of ratios. In his terms, using s for

distance and t for time, the two ways are written as

SCALAR s1 : s2 = t1 : t2

FUNCTIONAL si : ti = s2 : t2

he notes that for the mathematically sophisticated,

interchanging the middle terms to get from one to the other is a

trivial matter, but is a large step for the learner because of

the differing cognitive content of the two representations.

However,*Lybeck points out (1978, p. 32):

It is the quantification of the relation between
qualitatively different variables [i.e., the functional
approach -- JJK3 that produces the fertile relationship.
Also, it gives the desired simplicity in the abstract
description of the world around us, which is
tharacteristic of modern scientific perspectives.

We agree that the function view is to be emphasized. Since

proportions are nothing more than linear functions with only a

small sample of data from the domain of the function under

consideration, they should be viewed in the way that generalizes

to larger sets and which emphasizes the underlying

quantititative invariant, the "m" in the "y = mx + b."
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4. Software REY042@gnt_eida22.

4.1 Goals.

We should emphasize at the outset that we by no means expect to

build a curriculum in our Project. Such is beyond both the

scope of our mandate and the reach of our resources. Rather,

our primary goal is to build potential technological components

of a desirable future curriculum in line with a particular

organizing theme: the application of multiple linked

representations, simultaneously available and visible. Such a

software environment is intended to support the learning and

integratidn of the different representations and different

aspects of a given complex mathematical concept, in this case

the concept of intensive quantity.

We sketch briefly below a sample set of coordinated

representations and potential actions on them. Most details,

and perhaps important innovations not yet considered, await

empirical guidance to be derived from clinical testing of

alternatives currently underway. The bulk of this clinical work

takes the form of ciintcal probe sessions followed by brief

teaching interventions involving the use of some potential

component of the software manifested as well as possiole in

non-computerized form. As pieces of it,a software environment

become available, these will be used in a clinical environment
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and video recorded using a split screen half for the child and

half for the computer screen.

Of considerable interest beyond the learning o1 the mathematics

in these situations will be the cognitive impact of various

software features, such as the timing of the microcomputer's

reacticn to a particular input in one represeniltioo and its

consequences in another: Should they be nearly simultaneous in

some real time sense? Should there ba a specifiable delay?

Should the timing be under the control of the student? Which

options should be made available to the student? How many

representations should be present simultaneously on the screen?

How much "history" of the student's actions should be made

available and, if so, in what form? Such design issues will

form important side questions that will be the subject of

considerable input from other ETC experts.

4.2 Major Representational Issues and Concrete Illustrations.

4.2.1 Forms of reprsentations.

As suggested earlier, student models for intensive quantities

often lack the inherent "typicality" of an intensive quantity:

to know that there are 5 red cars produced for uvery 3 blue cars

produced by a factory is to know something about all samples of

production and not merely the color of a particular sample of

eight or sixteen cars. However, many students seem able only to

think of one or two small samples so, while their representation
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may not be structurally incorrect, it is an inadequate, overly

concrete representation of the intensive quantity involved and

needs to be "ramped upward" to a more general and potent one.

As indicated above, a much more flexible and potent

representation of intensive quantity is provided by the slope of

a straight line on an a pair of coordinate axes labeled by the

referents involved. In the case at hand the axes would be

labeled "number of blues" and "number of reds," for example, and

the line would have slope 5/3 or 3/5 depending on the choice of

labels for the horizontal and vertical axes, respectively. This

visual model has two immediate virtues:

(1) Its simultaneous representation of "all" samples, although

to be more precise, the discreteness of the quantities involved

would need to be taken into account perhaps via the use of a

dashed line with markers at points with strictly integral

coordinates.

(2) The visually explicit embodiment of the ratio's numeric

constancy in the straightness of the line.

The longer term virtues of this kind of representation in terms

of mathematical power were argued in Section 3.7 in the context

of the functional approach to proportion and ratio, and in

Section 2.4 it was proposed as a vehicle for curricular

coherence and unity. It and the ideas in which it participates

provide entree' to some of the greatest intellectual

6u
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achievements of western culture. However, this representation

must be learned its syntax and style of reference require

explication. Even more importantly, it must be cognitively

linked to other, perhaps more concrete, understandings that the

student may have of ratio and intensive quantity.

To this end we propose the creation of an iconic representation

of an intensive quantity - a concrete "sampling" device that

provides a direct visual representation of the two quantities

involved in the composite, intensive quantity. One such that

has been developed in prototype form provides a screen window

tesselated with "boxes" in which are put sets of icons in a

given ratio. Thus, to model the 5 red cars per 3 blue cars

production ratio mentioned above, the student inputs the ratio

and the gomputer responds with a window tesselated with boxes,

each of which contains 5 icons of one type and 3 of another

directly below in the same box. The student can then highlight

boxes as he or she chooses and the computer responds with the

total number of reds and blues in highlighted boxes. We would

expect to organize this data in vertical tabular form with the

two columns of the table appropriately labeled. As the student

highlights or "de-highlights" boxes, the table grows or shrinks

in length (or perhaps has the appropriate ordered pair

highlighted in a table with a long list of pairs already

provided).

In a multiple representation environment the concrete and the

tabular representations would appear in adjacent windows. In
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another window the appropriate ordered pairs would be either

plotted or highlighted to correspond with the actions taking

place in the other windows.

More than one type of such a concrete sampler may be necessary

to accomodate discrete vs continuous quantities. Consider, for

example, the modeling of the ratio of a pair of line segment

lengths - the above form of concrete representatic (using

"boxes" containing icons) would not be appropriate. Other

factors, such as the different kinds of semantic relationships

between the referents, also call for more than a single style of

concrete iconic representation. Consider, for example the

intensive quantity associated with 3 candies per bag - it might

be useful to provide a representation that models a containment

relationship rather than a simple association. Again, some of

the dimensions of the previously mentioned Problem Web may prove

to be relevant, although instead of providing sets of problems

organized along the various dimensions bearing upon problem

difficulty, we take a more pedagogically direct approach

modeling more directly the features that associate with problem

difficulty. Thus, instead of moving around in a collection of

problems in order to find one that is sufficiently

understandable to solve and generalize from, the student will

have the freedom to choose (from an available menu of

representative types) a sufficiently concrete and sufficiently

iconic representation of the quantities involved so as to

facilitate understanding and choice of appropriate actions.



ETC Technical Report 60 Wor

An important consequence of having multiple choic

Problems Project

es of iconic

representations all having the same tabular and gr

associates is to force to the foreground the commo

structure that inheres in the several superficially

concrete models. We regard this as a kind of educat

from the technology t'at has enormous potential, yet

aghical

mathematical

different

ional payoff

has had

very little, if any, systematic pursuit. Dickson (1985)

likewise argues for juxtaposed symbol systems in softwa re

environments that emphasize and render more learnable im portant

translation skills, although his examples involve signifi cantly

less sophisticated interactions among representations than

have envisioned.

we

A fourth representational form will be provided for computin

with int*nsive quantities. Our current plans call for a

Semantic Calculator type of work pad that helps organize and

record computations with the quantities involved in a particula

situation by keeping track of the referents as quantities are

operated upon. Again, the operations on the pad will reflect

and be reflected by actions in the other representations.

g

Shavelson and Salomon (1985, p4) also argue explicitly for

multiple representations (using the language of "symbol

systems"):

The power of representing information in more than one
symbol system lies in the ability to: (a) provide a more
complete picture of a phenomenon than any single symbol
system can; (b) increase the chances of linking new
information to the learner's preferred mode of learning

63
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(i.e., to the learner's preferred symbolic
representation); and (c) cultivate cognitive skills in
translating or shifting among symbolic representations.
Our expectation is that this symbo is flexibility will
increase the learner's knowledge and understanding.

4.2.2 Actions on representations: reasoning and computing.

A representation is a tool to think with, to perform cognitive

actions with or to be acted upon in Olson's and Goody's terms,

a "tool of the intellect" (Olson, 1976, 1985; Goody, 1977). It

is sometimes convenient to speak in terms of internal cognitive

representations and external or, in Vygotsky's terms (Vygotsky,

1978), extracortical, representations. Of course, these exist

in fundamental partnership - although some would argue that the

distinction is philosophically indefensible. This is not the

place for an airing of the matter fuller discussions of the

distinctions and philosophical issues can be found in Salomon

(1979), Kaput (1985, 1985a), Lesh (1985) and Olson (1985).

Hence the key to the software environment is the kinds of

actions its representations support. We shall list some likely

possibilities based mainly in our experience with non-cybernetic

intensive quantity tasks. Undoubtedly, experience in the

environment will suggest some new possibilities, including tasks

with no paper-pencil or physical analogs. However, work by

Schultz (1984) suggests that even when limited to use of

physical manipulatives, the problem solving ability of 7th

graders improves considerably. She used a microcomputer to

generate word problems in the presence of physical materials

6 4
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that students used to model the relationships in the problems as

part of an extended teachina experiment. The microcomputer also

provided menus of potentially useful physical materials as well

as animated sequences describing the problem situation.. As Post

(1980) points out, such physical materials are in fart

abstractions from the given problem situation. Thus an iconic

microcomputer representation is but another step in the same

direction taken by physical manipulatives, without all the

practical drawbacks of physical materials.

Note also that we are thinking in terms of two toad classes of

activities:

(1) those centered within a particular representation and

traditionally associated with the domain at hand, and (2) those

that deliberately exercise the linked multiple representation

nature of the software in acts of translation. The former class

would include, for example, the standard ,..-oportional reasoning

tasks involving the comparison of two ratios and the various

missing-value tasks. The latter would include such tasks as

performing an action in one representation and predicting the

consequences in another representation.

In the concrete, iconic representation one will be able to

perform actions beyond the highlighting of samples. For

example, one base activity for younger students is to predict a

numerator given a denominator, and vice versa. In concrete

terms, this may take the form of having a section of the

tesselation's icons deleted (again, refer to the red and blue
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cars, with, say, a certain set of boxes highlighted having the

red car icons deleted) and then requesting the student to input

the number of red cars to match the blue ones in the affected

boxes. A corresponding stack of red cae icons appears and is

then "loaded" by the student into the highlighted boxes.

Success or failure is measured by whether the stack of red car

icons is exactly consumed or not. In a continuous

representation, the stack may be replaced by an appropriately

long line segment (perhaps with unit markers) with pieces

snipped off and moved to the appropriate places to complete a

match. Interesting possibilities present themselves in the

continuous case with the use of non-integral values. Earlier

work by Quintero (1981, 1983) and Schwartz (1981) provides

guidance, as does continuing clinical work, on appropriate forms

of iconic representations.

It is important to realize that the above actions on the

concrete representation have analogs in the other

representations which "follow along" the actions generated in

the "active" or "input" representation. In particular, it is

easy to imagine the tabular and work pad analogs of these

activities. The work pad version gets particularly interesting

when non-integral numbers are involved and a choice for a unit

of comparison is needed (the finding of an appropriate unit

fraction). (Unit factor methods for solving these and related

problems have been strongly advocated from time to time (e.g.,

Herron & Wheatley, 1978) and are likely to be easily

implementable in this environment.]
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4,.2.3 Representational Detail and Research Issues.

We have already mentioned how the various semantic features of

intensive quantities will affe-t the style of concrete

representations used. However, even within a particular

semantic context, e.g., the discrete red car blue car

situation involving the icons within boxes, serious issues arise

at a finer level of detail. Consider, for example, the

extensive work uncovering the role of perceptual distractors in

student interpretation of fractions in concrete representations

(Behr & Post, 1981; Behr, et al 1983) and the difficulties that

some students have with the idea of equivalence of fractions

(Behr, et al 1984; Post, et, al 1985).

*

This work raises, but does not resolve the issue of what kinds

of actions to make available when a student highlights a set of

boxes, say two (each containing 5 icons of one type and 3 of

another). Should the boundaries between the two boxes be

dissolvable and should the icons be rearrangeable producing a

bo:: with 10 and 6 icons? If so, how might this action be

presented in the other representations? More importantly, how

would students who had been previously identified as having

difficulty with equivalence of fractions react to different such

possibilities? And what kinds of additional activities and

discussion are needed to surround this cybernetic action in

order to make it pedagogically meaningTul? We expect that our

exploratory work in this new conteAt to shed further light -In

J
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the nature of the underlying cognitions associated with

equivalence of fractions and the role of perceptual distractors.

Similar questions arise with respect to virtually all aspects of

the proposed software development. Other questions arise

regarding the learnability of certain of the representations -

what level of intellectual development is necessary to use the

graphical representation meaningfully? And, of course, perhaps

the largest and most novel question:

TO WHAT EXTENT DOES THE LINKED, MULTIPLE REPRESENTATION SOFTWARE

SUPPORT THE COGNITIVE LINKING OF THE MULTIPLE REPRESENTATIONS?

4.2.4 Sample Activities in the Graphs Environment.

Recall the concrete version of the "name the numerator given the

denominator task." In the graphical representation, this takes

the form of predicting on the vertical axis (red car axis) where

one would "land" if starting on the horizontal axis at the point

representing the number of blue cars in the incomplete boxes.

To test a prediction one travels vertically from this point to

hit the "5 red per 3 blue line" and then horizontally to the

vertical (red car) axis. See the figure below. (p.64)
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In general, the choice of which representation to act upon is

clearly dependent on both student and task variables in the

specific sense of Kulm (1979). Wr. will now illustrate some

tasks that are executed in the graptacs representation, but

which, of course", have analogs in the other representations. We

will now deal with continuous intensive quantities which are

chunked into familiar unit rates, rather than the arbitrary

numerical relationship embodied in the red car blue car

illustration. The goal, of course, is that the student will

eventually recognize the common mathematical structure that

underlies both situations. Furthermore, as argued earlier, the

graphical representation of the intensive quantity as a function

operator extends to that grand corpus of mathematics including

calculus - which was invented to deal with nonlinear change, but

which uses linear change as the means of local measure of change

(the tangent lin_). As a result, we have the potential of

building at least one aspect of the bridge from student

primitive models to the more sophisticated and potent models of

higher mathematics.

Suppose now that the chnt-Artuents of a particular intensive

quantity are more explicitly understood as a rate, as with the

W-)
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miles and hours. In this case the two axes of the graph serve

as starting points for calculations and reasoning involving

particular situations. The intensive quantity 10 mi/hr is

represented as a line of slope 10 on a coordinate plane with

horizontal axis labeled "hr" and vertical axis labeled "mi."

One can then answer questions such as "If I go 10 mi/hr for 2.5

hr how far have I gone?" One finds 2.5 on the "hr" axis, moves

vertically to hit the line and then horizontally over to the

"mi" axis to read off the answer, 25 mi. (See Figure A below.)

One uses the same representation to answer the reverse question

(involving an extensive by intensive quantity division) "How

long would it take to go 35 mi at 10 mi/hr?" In this case one

moves horizontally from the 35 mi position on the vertical axis

to the 10 mi/hr line and then down to the horizontal hr ax's

where the answer can be read off, 3.5 hr. Mathematically, of
It

course, one is tracing the inverse o-", the linear function f(x) =

10x.
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Such araphical representations can be concatenated to answer

questions and deal with situations involving additional
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intensive quantities, such as mi/gal, for example. Thus if one

knew the mileage of a certain vehicle were 20 mi/gal and were

asked "How much gas do I burn in 3 hr in driving the tractor

that averages 10 mi/hr?" then one would set up a second

coordinate axis system with gal on the horizontal and mi on the

vertical axes, respectively. (See Figures 13 and C.) One then

uses the first representation as before to find that in 3 hr one

travels 30 mi. Next, one finds 30 mi on the second system's

vertical axis, travels over to the 20 mi/gal line and then down

to the horizontal gal axis to read off the answer, 1.5 gal.

Clearly, such representations can Lie replicated to deal with an

enormous variety of multiplication and division situations. In

so doing, the student is also being concretely introduced to the

composition of operators and functions.

With the representations understood at a first level, one can

then go on to tasks that build upon earlier work, such as

comparing different intensive quantities in various

representations, e.g., with more than one intensive quantity on

a given coordinate axis, asking questions about the effect of

doubling the production of blue cars and graphically comparing

the previous ratio with the new one. And, of course. one can

move to more sophisticated multiple proportion problems in the

conceptual field of multiplicative structures described in

Section 3 (g) (Vergnaud, 1983).

4.3 Earlier Curriculum Development Work.
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The elusive dream of unity for the mathematics curriculum is not

new. Much earlier in this century there were repeated calls for

unification based on the widespread application of the +uncticn

concept (Moore, 1902; National Committee on Mathematical

Requirements of the MAA, 1923). Later, in the spirit of

Bourbaki, unification was to be had on the basis of the

foundational role played by set theory ,..;tilizing the logical

structure of the subject. However, the reader will note an

important shift in 4,e organizing principles called upon in our

approach. While the various abstract structural elements of the

domain play an important constraining role in determining what

can and should be done, other features of the domain are being

addressed here as well, features having to do with the forms

used to represent the structural content. Perhaps even more

important, we (and other contemporaries) are negotiating much

more explicitly and knowledgeably than ever before with the

cognitive constraints, the learnability of the subject matter.

But again, this is not new. Others, especially in the ill-fated

but often remarkably imaginative curriculum development projects

of the past two decades, attempted coherence in the mathematics

curriculum and paid close attention to the ways that the

important ideas can be learned. r'requently their Nark foundered

on the hard rocks of implementation - for one reason or another,

they were difficult to implement on a large scale. New

information technologies should help eliminate some of the

earlier implementation barriers considerably.
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We are searching out and reviewing much of this work, frequently

with the assistance of earlier project directors or

participants. Work being examined includes:

The Madison Project, Elementary Science Studies, Developing

Mathematical Processes, The Arithmetic Project, The Minnemast

Project, The SciMath Project (including software extensions of

the dimensional analysis techniques being independently

developed).

While isolated elements of several of these curricula will be

helpful, the most sustained effort paralleling ours, especially

regarding the attempt to use graphical representations and

slopes at early grade levels, is that of Paul Rosenbloom

formerly materials designer for the Minnemast Project. He is

making available all of his materials, including a significant

portion that was never published.

We are also in the process of reviewing textbook series for

potentially useful materials and task possibilities, and

examining the work of contemporary development projects,

including:

The University of Chicago School Mathematics Project, The School

Mathematics Project from England's Shell Centre and Cambridge

University Press, The Ohio State SOHIO-NSF Middle School

Mathematics Project, the software (in LISP) being developed by

James Greeno and colleagues at Berkeley, the Ontario Institute

Classroom Materials, and perhaps most important, the Rational

Number Project, which has researched, developed and tested on a

. '73
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large scale and under a tight theoretical framework a variety of

diagnostic and teaching materials which are now being extended

to proportional reasoning situations.

Lastly, we are reviewing the considerable practic.Li literature

aimed at teachers over the years. This material contains much

useful advice on the teaching of rate, proportion,

multiplication, and division, some of which will be pertinent to

the construction of activities in the planned software

environment.
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Appendix A

Student Generated Single Step Division Problems
Study A

Fall 1984

We asked 290 students in the public schools of Cambridge, Newton
and Watertown, MA., as well as some freshmen at Southeastern
Massachusetts University, to

Make up a problem that requires one division, and no
other operation, to solve it.

The data were classified by grade, age, sex, and mathematical
ability as assessed by the classroom teacher.

Of the problems generated in response to this division prompt,
90% were single step division word problems. Most of the
inappropriate responses were clustered in grades 4-6. They were
mainly multiple step problems involving subtraction. Children of
higher ability tended to generate a higher percentage of single
step division word problems. There were no differences in any
respect due to sex.

Problem Distribution
per cent

E/E E/I I/I I/E

Grades 4-6 (n=25) 84 16 0 0

Grades 7-8 (n =13) 77 23 0 0

Grades 9-10 (n=19) 79 21 0 0

Grades 11-12 (n=13) 85 0 15 0

Grade 13 (n=11) 73 27 0 0

TOTAL (n=81) 81 17 2 0
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